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Cellular physiology depends on the alteration of protein
structures by covalent modification reactions. Using a combina-
tion of bioinformatic, genetic, biochemical, and mass spectro-
metric approaches, it has been possible to probe ribosomal
proteins from the yeast Saccharomyces cerevisiae for post-trans-
lationally methylated amino acid residues and for the enzymes
that catalyze these modifications. These efforts have resulted in
the identification and characterization of the first protein histi-
dine methyltransferase, the first N-terminal protein methyl-
transferase, two unusual types of protein arginine methyltrans-
ferases, and a new type of cysteine methylation. Two of these
enzymes may modify their substrates during ribosomal assem-
bly because the final methylated histidine and arginine residues
are buried deep within the ribosome with contacts only with
RNA. Two of these modifications occur broadly in eukaryotes,
including humans, whereas the others demonstrate a more lim-
ited phylogenetic range. Analysis of strains where the methyl-
transferase genes are deleted has given insight into the physio-
logical roles of these modifications. These reactions described
here add diversity to the modifications that generate the typical
methylated lysine and arginine residues previously described in
histones and other proteins.

Regulation of biological function by protein methylation
reactions

It is more and more apparent just how much of the biological
function depends upon post-translational modifications (1).
The human genome encodes some 900 enzymes catalyzing just
protein phosphorylation or ubiquitination (2, 3). However, it is
now clear that methyl groups can stand beside phosphate
groups and ubiquitin as major players in controlling the physi-
ological functions of proteins. We are beginning to understand
how the much greater diversity of protein methylation reac-
tions can give rise to a greater diversity of function (1, 4 – 8). We
are also learning the importance of cross-talk between protein
and DNA methylation reactions (9) and among protein meth-
ylation, phosphorylation, acetylation, and ubiquitination reac-
tions (10 –12). Finally, we are discovering how alterations in

protein methylation pathways can lead to human pathology,
particularly in cancer (13–15).

The collection of over 60 human protein arginine and lysine
methyltransferases that leave histone “marks” recognized by
reader proteins to guide gene expression are perhaps the poster
children for the importance of protein methyltransferases (16,
17). However, recent work has emphasized the importance of
methylating nonhistone substrates at these residues, particu-
larly ribosomal proteins, translation factors, and transcription
factors in a wide variety of organisms (7, 8, 15, 18, 19). Further-
more, the methylation of lysine and arginine residues repre-
sents just the tip of the iceberg in protein methylation, and
modifications have also been established at histidine, modified
histidine (diphthamide), glutamate, glutamine, asparagine,
L-isoaspartate, D-aspartate, cysteine, isoprenylcysteine, methi-
onine, and N- and C-terminal residues (1, 4).

Recent work has demonstrated how methylated residues can
be recognized by protein interaction domains for transcrip-
tional control (13, 20), can be targets for ubiquitin-E3–linked
degradation (21), can facilitate or block protein–protein inter-
actions or enzyme–substrate interactions (6, 22), and can mod-
ulate interactions with RNA (7, 23, 24). An important recent
discovery is that the three hydrogen atoms on methyl groups
bound to positively charged nitrogen or sulfur atoms may
themselves be able to serve as hydrogen bond donors, greatly
expanding the possibilities for interactions (Fig. 1) (25, 26).

There are presently few systems where the full physiological
role of protein methylation is understood. The question then
arises of how useful is it to discover new types of protein meth-
ylation reactions when we do not fully understand the systems
already described. Do such discovery efforts represent mere
cataloging of modification enzymes and their substrates? The
fact that the proteins are methylated by the products of genes
that have often been conserved throughout the evolutionary
development of organisms suggests that a full understanding of
the biology of an organism needs to include an appreciation of
these modifications and their functions. As we learn more from
each new protein methylation system described, the range of
functional roles also increases, and we are provided new targets
for therapeutic intervention into human diseases (13, 27).

Yeast ribosomes and the discovery of novel
methyltransferases

In recent years, it has been recognized that proteins of the
translational apparatus, including both ribosomal proteins and
elongation factors, are major substrates for methylation reac-
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tions (5, 7, 8, 19, 28). These proteins, and the enzymes that
modify them, have been extensively studied from the intersec-
tion of two research directions. In the first place, the combina-
tion of bioinformatics and the biology of Saccharomyces cerevi-
siae have allowed an approach to identify methylated sites in
yeast proteins (23, 24, 29, 30). Bioinformatic analyses have
allowed for the identification of open reading frames for candi-
date methyltransferases from genomic DNA sequences both of
the major seven–�-strand family and of the SET domain,
SPOUT, and other structural families (31–35). Importantly, the
ability of S. cerevisiae to transport S-adenosylmethionine across
its plasma membrane (36) allows for radiolabeling of methy-
lated proteins in intact cells and for their detection at sub-fem-
tomole levels (see below). Significantly, the availability of gene-
knockout strains of yeast allows for biochemical analyses of
mutants to identify the methyltransferases responsible for each
of the modifications. Second, mass spectrometric analyses, par-
ticularly top-down intact mass measurements, have allowed the
location of methylated residues in the amino acid sequence of
the modified proteins (23, 24, 37). The identification of the
modifying enzymes can then allow for the study of the physio-
logical effects of each methylation reaction by examining the
biology of the mutant strains lacking the methyltransferase.

My attention to translation was initiated by the discovery in
the Tam laboratory (38) that the large subunit ribosomal pro-

tein Rpl12ab in yeast contains at its Arg-66 residue a unique
type of modification discovered a few years earlier in my labo-
ratory (39). This arginine residue is modified by the addition of
a methyl group to the bridging �-nitrogen atom of its side chain
guanidino group by a methyltransferase identified subse-
quently and designated Rmt2 (protein arginine methyltrans-
ferase 2) (31). All other protein arginine methyltransferases
studied to date monomethylate or dimethylate only the termi-
nal �-nitrogen atoms of the guanidino side chain (40).

When we later sought out new substrates for uncharacter-
ized family members of the yeast SET-domain proteins (a fam-
ily that includes the previously known protein lysine methyl-
transferases that modify histones and cytochrome c), we
discovered that the large subunit protein Rpl23ab was also
modified by methylation. We initially found that methylation of
a 15-kDa protein was lost in a strain with a deletion in the
YPL208W gene encoding one of the 12 SET-domain family
members in S. cerevisiae (41). Through mass spectrometric
analyses, the methylated protein was identified as Rpl23ab, and
the formation of the two dimethylated lysine sites was shown to
be dependent upon the YPL208W gene (subsequently desig-
nated Rkm1 for ribosomal lysine (K) methyltransferase 1) (41).
Importantly, we then became aware of previous work using
advanced methods for high-resolution intact mass spectromet-
ric analyses of ribosomal proteins (42, 43), including analyses of

Figure 1. Structures and nomenclature of selected “less traveled” methylated amino acid residues. The replacement of a hydrogen atom with a methyl
group not only increases the steric bulk at that position in the peptide but also decreases the nucleophilicity of the linked nitrogen or sulfur atom. Methylation
can also provide additional carbon-based hydrogen bond donors (25, 26). These bonds can form when the carbon atom of the methyl group is bonded to a
nitrogen atom bearing a net positive charge, as with the proline, histidine, and arginine methylated derivatives shown in the figure.
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the large ribosomal subunit of yeast (43). This work had iden-
tified the S. cerevisiae proteins that were unmodified (with
intact masses corresponding to the expected amino acid
sequence), and the proteins that were modified by additional
masses corresponding to methylation (14-Da increases) and/or
acetylation (42-Da increases) (43). This study had already iden-
tified six large subunit ribosomal proteins as possible methy-
lated species, including Rpl12ab and Rpl23ab (43). It gave us the
impetus to focus on determining the sites of potential methyl-
ation of the other four candidate proteins (as well as additional
methylation sites on Rpl12ab) and to characterize their meth-
yltransferases and functions by the approach described above.
The result of this work was the identification of four additional
protein lysine methyltransferases, three from the SET domain
family (Rkm2, Rkm3, and Rkm4 (44, 45)) and one from the
seven–�-strand family (Rkm5 (46)). Significantly, this work
also identified four additional novel and/or unusual types of
methyltransferases that are described below.

Table 1 summarizes the sites of yeast methylated ribosomal
proteins that occur at positions other than those modified by
well-established protein lysine and arginine methyltransferases
and the enzymes responsible for their formation. The success of
the work identifying these sites and enzymes depended upon
the combined bioinformatic, genetic, biochemical, and mass
spectrometric approaches described above. In the process, we
used high-capacity, high-resolution chromatographic assays to
detect radiolabeled methylated amino acid residues based on
sulfonated polystyrene cation-exchange resins. Using in vivo
and in vitro methyl labeling with high-specific activity, S-ad-
enosyl[methyl-3H]methionine labeled with three tritium atoms
per methyl group (giving a specific activity of about 100 cpm per
femtomole of methyl groups), and our ability to detect less than
10 cpm by extended liquid scintillation counting, we can detect
attomole levels of methyl groups in mg or larger amounts of
protein (23). This extraordinary sensitivity allows us to detect
modifications that would be missed by other commonly used
approaches. Additionally, we can separate very similar methy-
lated amino acid derivatives. The resolution of this chromatog-
raphy is so high that we generally see a difference in elution
position between the tritiated and hydrogen forms of an amino
acid (47). These methods complement immunochemical meth-
ods that can sometimes match their sensitivity but can be much
less specific, as well as top-down and bottom-up mass spectro-
metric methods coupled with fragmentation. Top-down mass
spectrometric approaches, developed by us in collaboration
with the Whitelegge laboratory at UCLA, have allowed for the
detection of specific modifications at specific sites along the
polypeptide chain (23, 24, 45, 48).

This work provided some surprises, including the identi-
fication of the first enzyme catalyzing the methylation of a
histidine residue (24), the first enzyme catalyzing eukaryo-
tic N-terminal methylation (48), the characterization of a
brand-new type of protein arginine methyltransferase (23),
and the discovery of a methylated cysteine residue in a zinc
cluster (23). The current status of these methylation systems
is described below. T
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Protein N-terminal methyltransferases

In addition to the common acetylation of the N-terminal
amino group of proteins in a wide variety of organisms, a small
number of proteins were established some years ago to be
methylated at the �-amino nitrogen atom to give mono-, di-,
and trimethylated derivatives (49). Full modification can fix the
positive charge on the nitrogen atom and abolish its nucleo-
philic reactivity. In 1987, analysis of the N-terminal sequences
known in eukaryotic species suggested the existence of an
enzyme or enzymes that would recognize their common Xaa-
Pro-Lys N-terminal sequences (49).

In 2004, a proteomic analysis of S. cerevisiae showed that the
small subunit ribosomal protein Rps25A/Rps25B (N-terminal
sequence PPK) contains an N-terminal dimethylproline residue
(50). By 2006, our laboratory had found evidence for five added
methyl groups on the large ribosomal subunit yeast protein
Rpl12ab near the N terminus including modification at Lys-3 by
a SET-domain methyltransferase designated Rkm2 and by a yet
unidentified enzyme at Lys-10 (44). However, these results
were called into question by reports on the modifications of the
orthologs of Rpl12ab in Arabidopsis thaliana (51) and Schizos-
accharomyces pombe (52); both reports suggested that our MS
data were more consistent with the dimethylation of the N-ter-
minal proline residue and the trimethylation of Lys-3 in line
with the similar N-terminal modification of the Arabidopsis
and S. pombe proteins. Further analysis in our laboratory (45)
confirmed the N-terminal modification and the major methyl-
ation of Lys-3 as opposed to Lys-10 (53). The correction of our
initial methylation assignment was particularly painful because
we realized that the N-terminal sequence of Rpl12ab (PPK)
should have alerted us to its modification by the prediction of
an XPK methyltransferase made by us some 20 years earlier
(49).

The methyltransferase responsible for the modification of
the N terminus of Rpl12ab and Rps25a/Rps25b in S. cerevisiae
was found by mass spectrometric analysis of these proteins
purified from strains with deletions of genes encoding candi-
date methyltransferases. Loss of the YBR261C gene resulted in
the absence of the N-terminal modification of both proteins,
and the encoded protein was then designated Ntm1 (N-
terminal methyltransferase 1) (48). Purified Ntm1 and its
METTL11A human ortholog (now designated NTMT1) cata-
lyzed the methylation of synthetic peptides with N-terminal
proline, serine, or alanine residues followed by the proline–
lysine sequence, but no activity was seen with peptides where
the proline in the second position or the lysine in the third
position was substituted. The NTMT1 human enzyme was also
identified at nearly the same time by the Macara laboratory and
designated NRMT for N-terminal RCC1 methyltransferase
based on one of its substrates (54), and later NRMT1 after
a second human ortholog (METTL11B or NRTM2) was
described (55). METTL11B was suggested to be primarily a
monomethyltransferase that may prime substrates for the
action of NTMT1 (55). Crystal structures of human NTMT1 in
complex with substrate peptides have been solved (56, 57) that
support the substrate specificity of this enzyme determined
from kinetic (58, 59) and inhibitor studies (60). A variety of

functions have been proposed for XPK N-terminal methylation
of eukaryotic proteins (61), including regulating the affinity of
protein binding to DNA (62, 63), DNA repair (64 –66), and
protection from aminopeptidase attack (49).

Unusual dual-protein methyltransferases that may
recognize both the N terminus and the side chains of
lysine residues

With the realization that ribosomes are major sites of protein
methylation, several groups focused on the modifications of the
elongation factors that closely interact with the ribosomal pro-
tein synthesis machinery (19, 67, 68). It has been known for
many years that lysine residues on elongation factors were
modified in both prokaryotes and eukaryotes. In the last few
years, seven protein lysine methyltransferases of the SET-do-
main and seven–�-strand family have been characterized for
most of the known modifications for elongation factors 1A, 2,
and 3 in yeast and have been designated Efm1 through Efm7 (5,
19, 67, 68).

Yeast Efm1 and Efm3– 6 all appear to be specific for methy-
lating one particular lysine side chain on one specific elongation
factor (19, 68). However, Efm2 has been shown to recognize
lysine residues on both EF2 and EF3 (5). A perhaps bigger sur-
prise was revealed with the characterization of yeast Efm7 that
appears to catalyze the modification of both the N-terminal
�-amino group and the side chain �-amino group of Lys-2 of
yeast elongation factor 1A (69). Efm7 may be the first example
of a protein methyltransferase that specifically recognizes one
protein substrate but then catalyzes methylation reactions at
different types of residues within that substrate.

The identification of the yeast Efm7 enzyme recalls work
from nearly 4 decades ago that provided evidence for a bacterial
enzyme that also appeared to modify both the N terminus and
the side chains of lysine residues. Here, the Escherichia coli
ribosomal protein L11 contains an N-terminal trimethylalanine
residue and trimethylated lysine residues at positions 3 and 39
(70). These modifications appear to be dependent upon the
PrmA gene product of E. coli (71). It is not known whether
PrmA can in fact catalyze the modification of all sites, or
whether a PrmA-dependent reaction is required for the action
of one or more distinct methyltransferases that modify the N
terminus and the lysine side chains. However, X-ray structures
of the PrmA ortholog from Thermus thermophilus have been
interpreted to suggest how this protein may be able to position
its L11 substrate for multiple methylation reactions (72).

The E. coli ribosomal protein L11 has an N-terminal AKK
sequence suggesting that the bacterial signal for N-terminal
methylation may be distinct from that in eukaryotic cells. The
yeast ortholog of the bacterial L11 protein is the mitochondrial
large subunit ribosomal protein Mrpl19. This protein has an
unprocessed N-terminal sequence MSQAAK; it is not known
what post-translational modifications may occur. There is no
apparent ortholog of PrmA in S. cerevisiae nor is there an
apparent ortholog of yeast Efm7 in E. coli.

In human EF1A, the N-terminal glycine also appears to be
trimethylated, although the adjacent lysine residue appears to
be unmodified (69). The methyltransferase responsible for this
modification has not been identified. There does not appear to
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be an ortholog of yeast Efm7 in the human proteome, so it
appears that a distinct type of enzyme must exist with specific-
ity only for the N terminus. It seems unlikely that this enzyme is
NTMT1 because the N-terminal sequence of GKE is unlikely to
be recognized given its XPK specificity.

Protein histidine methyltransferases

Prior to 2010, methylation of protein histidine residues at
either the �- or the �-nitrogen atom in the imidazole ring was
known for a small group of animal proteins, but nothing was
known of the enzymes that catalyze their formation (24). One of
the proteins identified from intact MS as possibly methylated in
S. cerevisiae was the cytoplasmic large subunit ribosomal pro-
tein Rpl3 (43). In 2010, we were able to show that the candidate
methyltransferase gene YIL110W encoded an enzyme that was
responsible for the �-methylation of histidine 243 in the “tryp-
tophan finger” of the Rpl3 (24). The methyltransferase, now
designated Hpm1 (histidine protein methyltransferase 1) is a
member of the seven–�-strand family of enzymes.

His-243 of Rpl3 is buried deep within the 25S RNA near the
A-site and peptidyltransferase center (73); the methylated N-3
atom contacts guanine-878 and adenine-876 of the 25S rRNA
(7, 74). Yeast hpm1 null cells have a pronounced deficiency of
60S subunits reflecting a significant defect in early rRNA pro-
cessing with the accumulation of 35S and 23S intermediate
RNA species (74). Using a dual-luciferase reporter system, we
have also been able to show significant (�2-fold) misincorpo-
ration of amino acids in cells deficient in Hpm1 (75). Hpm1-
deficient cells also demonstrated increased resistance to the
ribosome-binding antibiotics cycloheximide and verrucarin A,
suggesting structural changes in the ribosome that accompa-
nied the abnormal ribosome biogenesis (76). We thus proposed
that Hpm1 plays a role in the orchestration of the early assem-
bly of the large ribosomal subunit leading to a structure that
gives faithful protein production.

We had hoped that the identification of Hpm1 in yeast would
allow us to then identify the enzyme or enzymes responsible for
the methylation of histidine residues previously established in
other proteins, including the �-methylation of actin at His-73 in
almost all eukaryotes (77). However, we noted that actin from
S. cerevisiae, despite having the identical sequence of the
human protein adjacent to His-73 (YPIEHGIVT), is unmodi-
fied at this site (78). This result suggests that a distinct enzyme
in animal cells is responsible for actin modification. There is a
clear human homolog of yeast Hpm1, designated METTL18,
that shares amino acid identity with Hpm1 at 31% of 262 resi-
dues out of a total of 372 residues. Interestingly, METTL18 has
been found in a complex with human RPL3 and GRWD1 in
HEK293 cells (79). GRWD1 is found in pre-ribosomal com-
plexes (80), suggesting that the human complex may have a
similar function in ribosome biogenesis as the yeast enzyme. A
mammalian enzyme that catalyzes the methylation of the �-ni-
trogen of the histidine residue in the dipeptide carnosine (�-L-
Ala–L-His) to form anserine has been recently described (81). It
is unclear whether this enzyme may also be responsible for the
methylation of actin and other nonribosomal methylated
proteins.

An unusual protein arginine methyltransferase that
modifies the internal nitrogen atom of the guanidino
group

In mammalian cells, almost all of the extensive protein argi-
nine methylation reactions are catalyzed by members of a
sequence-related family of nine gene products, designated
PRMT1 to PRMT9 (40). These cytoplasmic and nuclear en-
zymes have been shown to complement protein lysine methyl-
transferases and indeed perhaps even protein kinases in mod-
ulating transcriptional activation/repression and controlling
mRNA splicing, DNA repair, the cell cycle, and signaling path-
ways (13, 15, 40, 82). A mitochondrial seven–�-strand methyl-
transferase from an unrelated family, designed NDUFAD7,
modifies a subunit of complex I in the mammalian electron
transport chain (83, 84). All of these enzymes modify only the
terminal �-nitrogen atoms of the arginine residue.

In S. cerevisiae, there are two established orthologs of the
PRMT1–9 family, Rmt1 (mammalian PRMT1 ortholog; Ref.
85) and Hsl7 (mammalian PRMT5 ortholog; Ref. 86). These
enzymes also modify only the terminal �-nitrogen atoms of the
arginine side chain. However, as discussed above, a novel meth-
ylated arginine residue was found in a yeast extract where the
bridging �-nitrogen atom was monomethylated (Fig. 1) (39) in a
reaction catalyzed by the Rmt2 methyltransferase (31). Inter-
estingly, Rmt2 does not share any sequence similarities with the
PRMT/Rmt1/Hsl7 family outside of the S-adenosylmethio-
nine-binding motifs, but it does share some similarity with the
mammalian small molecule guanidinoacetate methyltrans-
ferase where a bridging guanidino nitrogen atom is also modi-
fied to form creatine (31).

The only substrate presently known for Rmt2 is the arginine
66 side chain in the yeast ribosomal protein Rpl12ab (38). Rmt2
is located in both in the nucleus and the cytoplasm of S. cerevi-
siae and co-purifies with several nuclear pore components (87).
Importantly, a genome-wide transcription study of yeast cells
deleted in the RMT2 gene revealed down-regulation of a gene
encoding the type II myosin heavy chain (87). In a high-
throughput study, an Rmt2-GFP fusion protein was shown to
relocate to the nucleus after DNA damage in yeast cells induced
by hydroxyurea or methyl methanesulfonate (88). These results
suggest the possibility that Rmt2 has additional protein sub-
strates in yeast, although it is also possible that methylation on
the ribosomal protein is in some way coupled to DNA tran-
scription or repair.

BLAST searches reveal clear orthologs of Rmt2 in fungi in
both the ascomycetes and basidomycetes families as well as in a
variety of higher and lower plants. The only significant matches
in animal cells are in flatworms such as Schistosoma hemato-
bium, where a protein exists with 32% identity over 341 resi-
dues. The human ortholog of S. cerevisiae Rpl12ab, the 60 S
ribosomal protein L12, is 70% identical in amino acid sequence
over the entire polypeptide length to the yeast protein, and the
QNRQA sequence flanking the Arg-66 residue is identical in
humans and yeast. However, there is no evidence for methyla-
tion of this residue in mammals. It is unclear why a modification
of a highly conserved protein would itself not be highly con-
served through nature.
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Spout family methyltransferases are not just for RNA
substrates—a new type of protein arginine
methyltransferase

Analysis of the methylated proteins of the S. cerevisiae
ribosome yielded a further surprise. �-Monomethylation was
detected at arginine 146 in the Rps3 protein. However, muta-
tions in none of the known three members of the yeast protein
arginine methyltransferase family (Rmt1, Rmt2, and Hsl7)
resulted in the loss of the modification (23). By searching for
this modification in the collection of candidate methyltrans-
ferase deletion mutants, it was found that Rps3 methylation
depended upon the expression of the YOR121C gene (23). This
gene, now designated SFM1 for spout family methyltransferase
1), encodes a member of the SPOUT family of methyltrans-
ferases, whose members previously were only known to modify
RNA species (23).

Crystal structure analyses of Sfm1 showed that although the
overall structure is similar to that of SPOUT family RNA meth-
yltransferases, the active site has similarities to other protein
arginine methyltransferases (89, 90). A negatively-charged sur-
face adjacent to the active site was proposed to prevent RNA
substrate binding and to enhance the binding of the basic
region surrounding the Arg-146 substrate (KLRAARAKAMK).
The presence in Sfm1 of a C-terminal domain in addition to the
SPOUT domain appears to be necessary for its activity as a
protein arginine methyltransferase.

Significantly, the modification site in Rps3 interacts with the
18S rRNA (7, 23). This result suggests that the modification
may occur during the assembly of the ribosomal small subunit
in the nucleolus.

It appears that the phylogenetic distribution of Sfm1 is lim-
ited to the ascomycetes group of fungi. The yeast Rps3 ribo-
somal small subunit substrate of Sfm1 is highly conserved in the
human ribosome in its S3 protein (66% identical amino acid
sequence), and the yeast methylation site (AARAK) is partially
conserved in the human ortholog (GQRAK). However, there is
no evidence for methylation at or near this site in the human
ribosomal protein, although it has been reported that PRMT1
can modify human S3 at alternative arginine residues (91).

Cysteine S-methylation

Analysis by top-down MS of the proteins of the small ribo-
somal subunit of S. cerevisiae revealed that Rps27a was methy-
lated at cysteine 39 (23). However, it appears that this modifi-
cation may be fundamentally different from the ones described
above in that the methylation reaction may be nonenzymatic.
The crystal structure of the yeast small subunit showed that the
sulfur atom of Cys-39 is displaced from a tetrahedral position of
a four-cysteine zinc cluster presumably due to its methylation
(23). This cluster is similar to that seen in bacterial DNA repair
enzymes that demethylate spontaneously alkylated DNA, lead-
ing to the hypothesis that Rps27a may also be involved in DNA
repair and/or resistance to alkylating agents (92, 93). Here, the
methylated protein may simply represent a dead-end product
of the repair reaction.

Methylation of cysteine residues may also occur as interme-
diates involved in methyl transfer in other types of enzymes,

including radical S-adenosylmethionine rRNA methyltrans-
ferases (94) and methyl-coenzyme M reductases (95).

Recent work has provided evidence for methyltransferase-
dependent modifications of cysteine residues that may be of
regulatory significance. The NleE protein of pathogenic E. coli
is a methyltransferase with a unique structural fold that can
modify the human TAB2 and TAB3 proteins involved in NF-	B
signaling to blunt the inflammatory response against the bacte-
rium (96 –98). Interestingly, the modified cysteine residue in
these proteins is also coordinated to a zinc ion, although the
significance of this ligation is unclear. Biochemical studies have
now identified an additional NleE substrate as the ZRANB3
protein that functions in the remodeling of stalled replication forks
resulting from DNA damage (97). Finally, preliminary evidence for
the enzymatic methylation of a potential cysteine residue in yeast
trehalose-6-phosphate synthetase has been published (99), but
more work is needed to show the nature of the modified amino
acid and the identity of the putative methyltransferase.

Concluding notes

Of the methyltransferases reviewed here, only the enzyme
that modifies the N-terminal �-amino group of XPK substrates
has a both a widespread distribution in eukaryotes and the abil-
ity to modify a wide variety of proteins. One other enzyme, the
Hpm1 protein histidine methyltransferase, has a similar broad
distribution in nature but may be specific for its one ribosomal
protein substrate. Both the unusual Rmt2 and Rps3 protein
arginine methyltransferases appear to have a much more lim-
ited phylogenetic distribution and again may only modify their
one ribosomal protein substrate. Of course, it is possible that
further studies may identify additional substrates for these pro-
teins. If this is case, the observed phenotypes of the methyl-
transferase mutants may reflect methylation changes occurring
on nonribosomal proteins. Additional work with mutants of
ribosomal proteins themselves incapable of methylation may
clarify this situation.

It is unclear why ribosomal proteins are the targets of such a
variety of methyltransferases. In yeast, some two-thirds of all
known methyltransferases act on components of the transla-
tional system, including 10 ribosomal protein methyltrans-
ferases (Rkm1–5, Rmt1–2, Sfm1, Hpm1, and Ntm1), 10 release
and elongation factor protein methyltransferases (Mtq1–2,
Efm1–7, and Dph5), 13 rRNA methyltransferases, 16 tRNA
methyltransferases, and 2 mRNA methyltransferases. Because
null mutants of all of the protein methyltransferase genes are
viable in yeast, their collective role may be fine-tuning the pro-
tein biosynthetic apparatus for optimum activity. Further work
will be needed to assess the possibility that subtypes of ribo-
somes exist with proteins with distinct patterns of methylation,
perhaps in response to changing environmental conditions. A
recent study has shown that the Hpm1 and Efm7 methyltrans-
ferases described here are themselves modified by multiple poten-
tial regulatory phosphorylation and acetylation reactions (100).
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